RC VII. Patient dose assessment in diagnostic radiology: from modality specific to patient specific metrics

Dr. Jenia Vassileva IAEA The course will present the current developments in the patient dose assessment approaches in diagnostic radiology, with a focus on metrics representing risks for individual patients for tissue reactions or stochastic effects associated with radiological procedures. An overview will be presented of the modality-specific measurable dose quantities and the approaches to asses organ doses using generic or patient-specific phantoms, and the associated uncertainties.

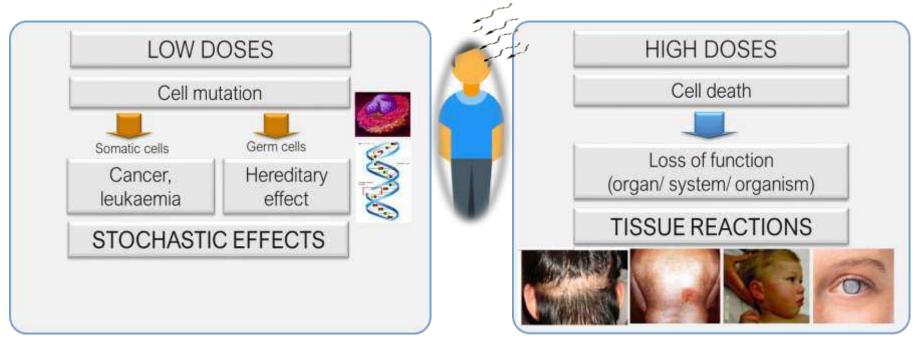
RC7: Patient dose assessment in diagnostic radiology: from modality specific to patient specific metrics

Jenia Vassileva, Ph.D.

Radiation Protection of Patients Unit International Atomic Energy Agency, Vienna, Austria

Why we need to know patient dose?

2 Modality specific dose metrics


Patient specific metrics

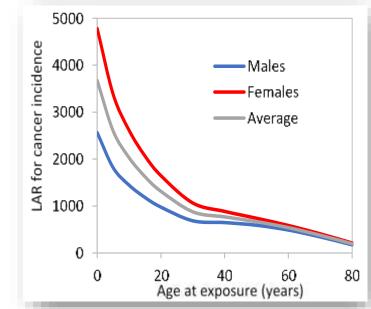
©Jenia Vassileva, IAEA

Why we need to know patient dose?

Goal: To assess the radiation risk to individuals

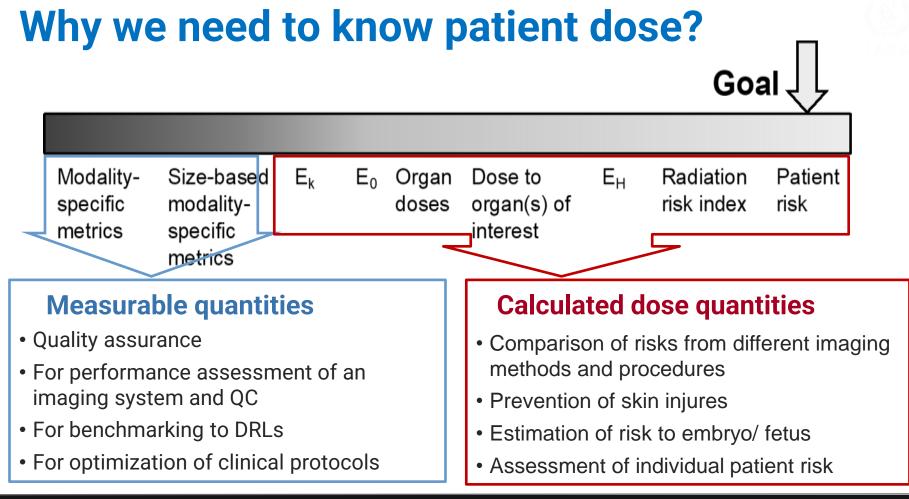
Why we need to know patient dose?

Goal: To assess the radiation risk to individuals


Risk depends on individual factors

- Body habitus, Age, Gender
- Health status (incl. life expectancy due to disease)

Risk often unknown or unknowable

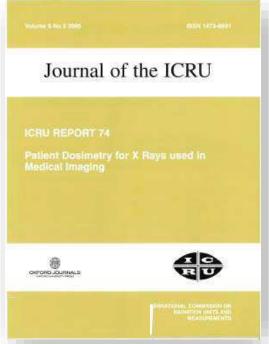

Lifetime attributable risk (LAR) for cancer incidence (all types of cancer) expressed as cases per 100,000 persons exposed to a single dose of 100 mGy, as function of age at exposure

©Jenia Vassileva, IAEA

6th European Congress on Radiation Protection 2022

• Why we need to know patient dose?

Modality specific dose metrics


B Patient specific metrics

©Jenia Vassileva, IAEA

Modality specific metrics

ICRU Report 74. Patient Dosimetry for X-Rays used in Medical Imaging. ICRU, 2005.

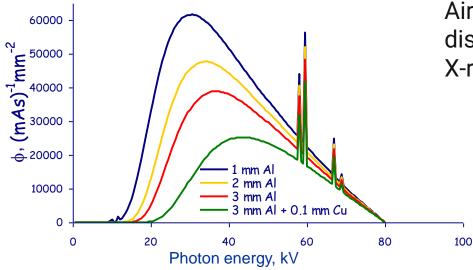
IAEA. Dosimetry in Diagnostic Radiology. An International Code of Practice.

TRS 457, 2007 457 TECHDICAL REPORTS SERIES DO **Dosimetry in Diagnostic Radiology: An International Code of Practice**)IAEA

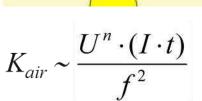
©Jenia Vassileva, IAEA

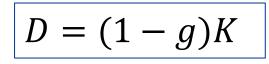
6th European Congress on Radiation Protection 2022

Modality specific metrics



The measurements are a responsibility of qualified medical physicists

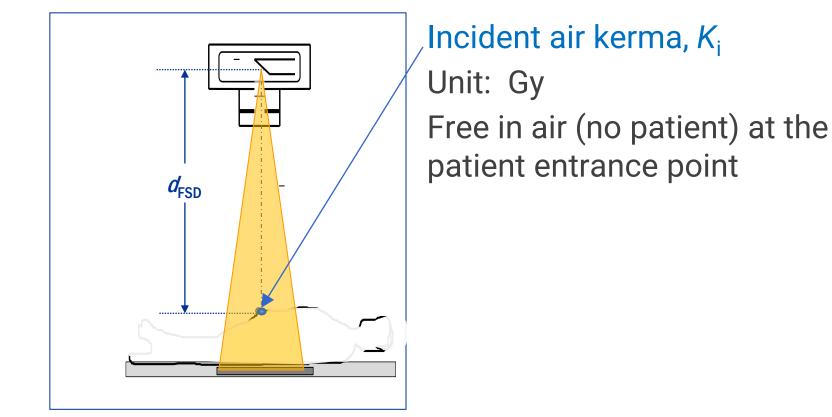

X-ray beam

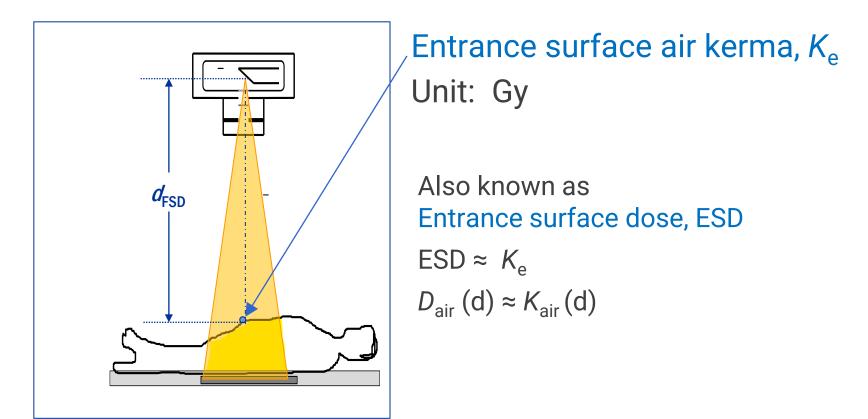

©Jenia Vassileva, IAEA

- X-ray spectrum with maximum energy 150 keV
- Spectrum depends on kVp, mAs, filtration



Air kerma at distance *f* from X-ray focus:




 $D_{air} \approx K_{air}$

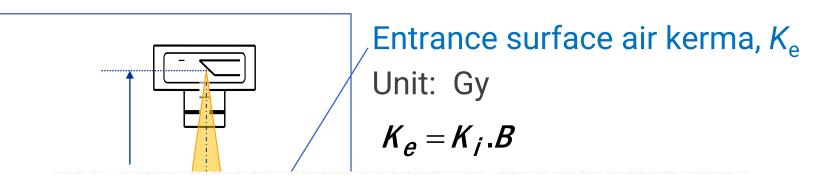
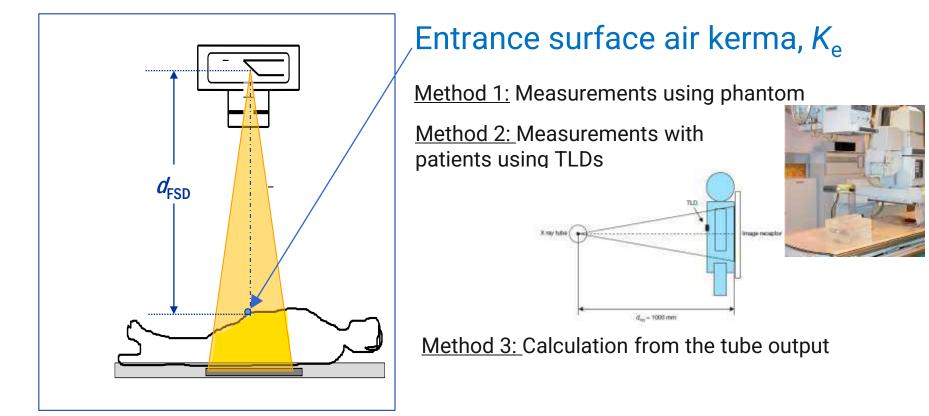
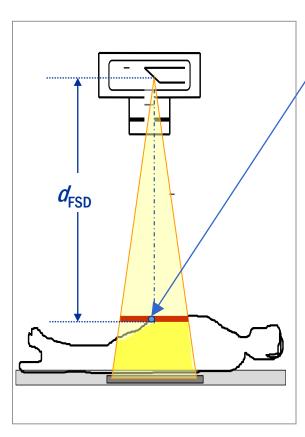
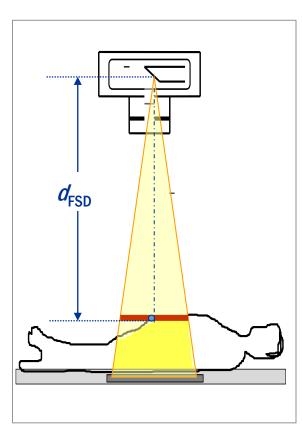



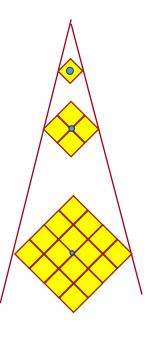
 Table A.2. Backscatter factors calculated by Monte Carlo techniques in an anthropomorphic phantom (Hart *et al.*, 1994a; 1994b).


HVL ₁ /mm Al	Peak tube voltage/kV	Total filtration/mm Al	Projection		
			$\begin{array}{c} Lateral \ LSJ^a \\ 11 \ cm \times 14 \ cm \end{array}$	$\begin{array}{l} \text{AP Abdomen} \\ \text{26 cm} \times 35 \text{cm} \end{array}$	$\begin{array}{c} \text{PA Chest} \\ \text{30 cm} \times \text{38cm} \end{array}$
2.0	60	2.5	1.23	1.31	1.23
2.5	80	2.0	1.25	1.37	1.27
3.0	80	3.0	1.27	1.41	1.30
4.0	110	2.5	1.29	1.45	1.34

©Jenia Vassileva, IAEA

©Jenia Vassileva, IAEA


Air kerma-area product, P_{KA}

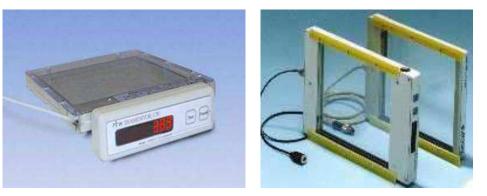

$$P_{KA} = \iint_A K(A) dA$$

If K = const $P_{\text{KA}} = K.A$

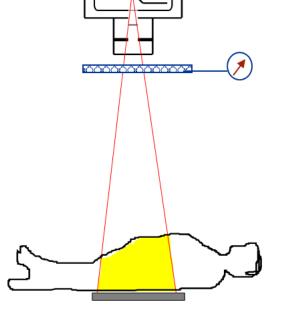
Also known as Dose Area Product, DAP

Unit: $Gy \cdot m^2$ Practical units: 1 $\mu Gy.m^2 = 1 cGy.cm^2$

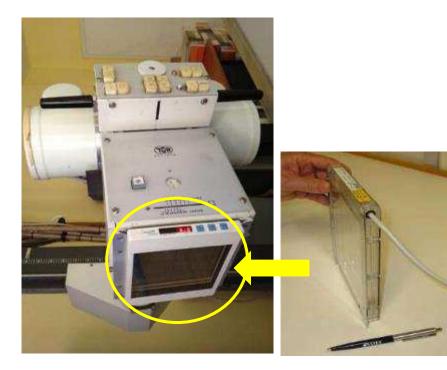
Air kerma-area product, P_{KA}


Kerma (dose) ~ $(1/f)^2$ Field area ~ f^2

KAP is independent on distance from focus

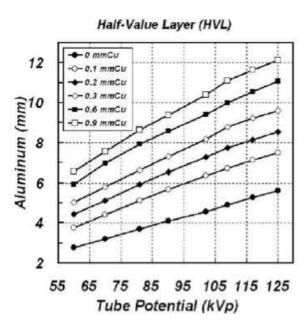

(neglecting attenuation in air, extra-focal and scatter radiation)

Air kerma-area product, P_{KA}


In-beam measurement with a large-size transparent ion chamber

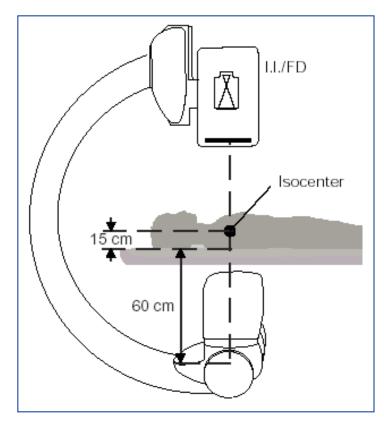
Measurement uncertainty 20 - 25 % at the 95% confidence level

Air kerma-area product , P_{KA}


6th European Congress on Radiation Protection 2022

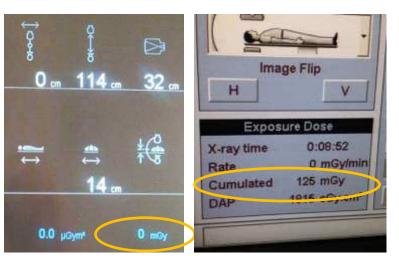
©Jenia Vassileva, IAEA

Dose quantities: Fluoroscopy

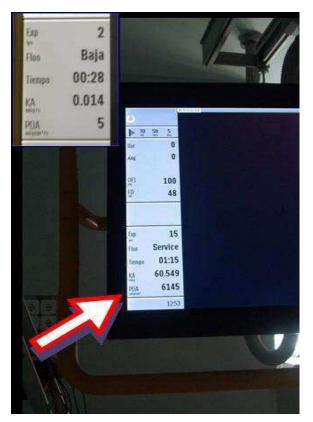


©Jenia Vassileva, IAEA

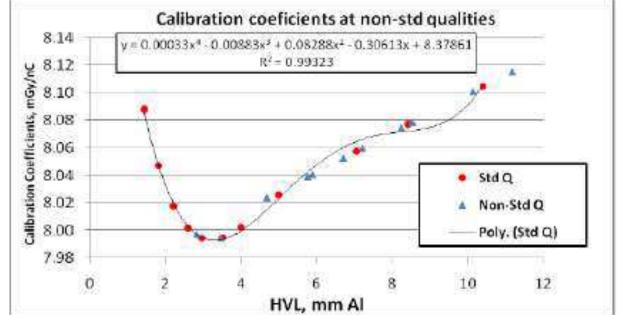
Dose quantities: Fluoroscopy



Air kerma at the interventional reference point, $CK_{a,r}$

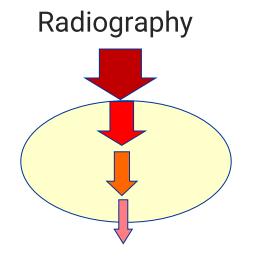

Unit: mGy

(Cumulative dose)

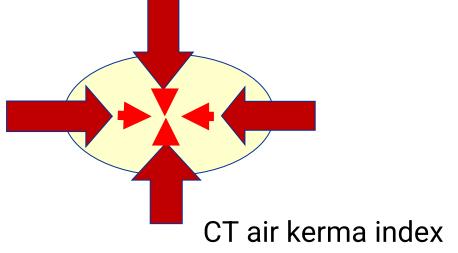


©Jenia Vassileva, IAEA

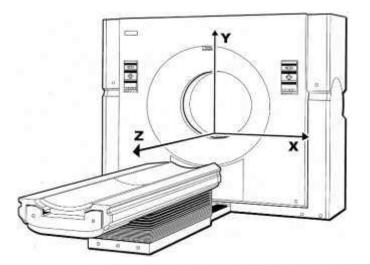
Dose quantities: Fluoroscopy

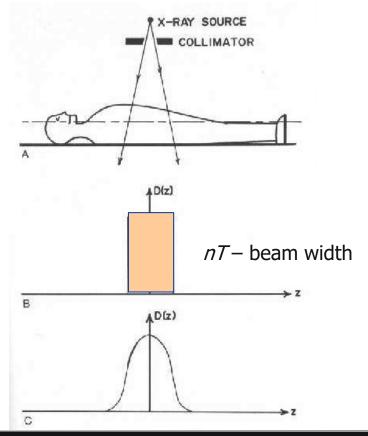

$$K_{a,r}$$
 is calculated as $K_{a,r} = P_{KA} / A$

6th European Congress on Radiation Protection 2022


©Jenia Vassileva, IAEA

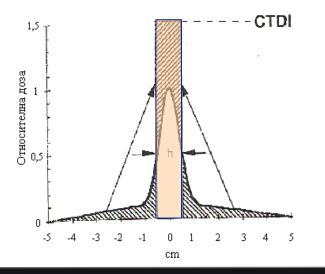
Entrance surface air kerma


Computed tomography



CT air kerma index C Unit: Gy

$$C = \frac{1}{nT} \cdot K(z) \cdot dz$$

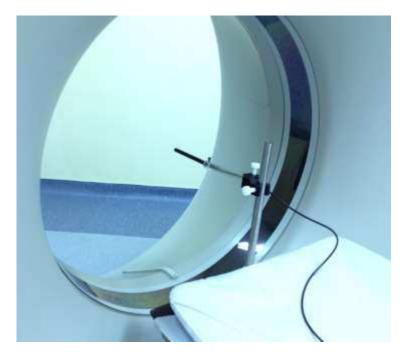

6th European Congress on Radiation Protection 2022

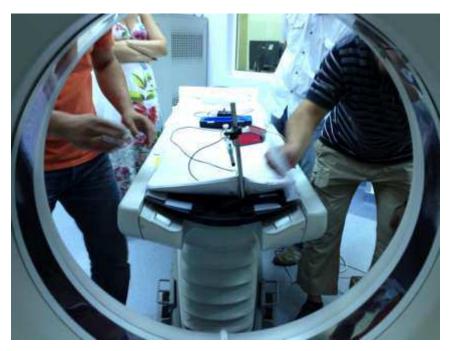
©Jenia Vassileva, IAEA

CT air kerma index C₁₀₀ (also known as CTDI) Unit: Gy

$$C_{100} = \frac{1}{nT} \int_{-50}^{+50} K(z) dz$$

Measured with ion chamber with a lenght 100 mm




In airIn a phantom

©Jenia Vassileva, IAEA

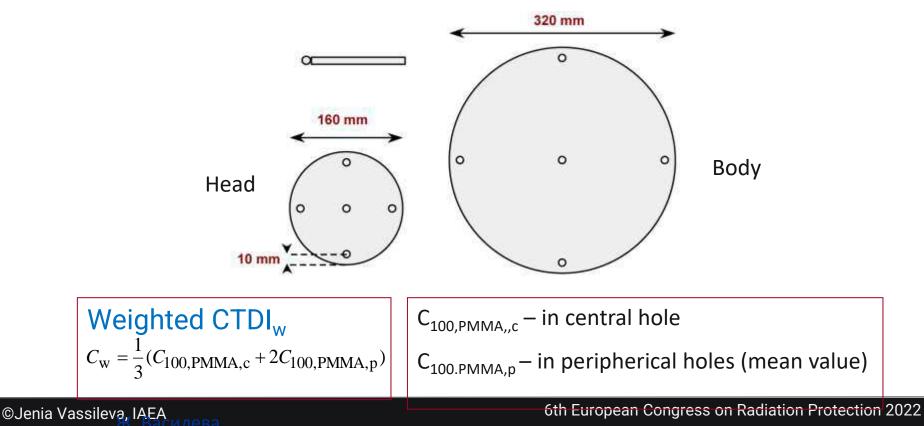
CT air kerma index C_{100} Measurements in air

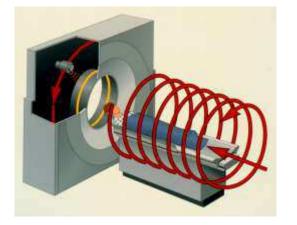
6th European Congress on Radiation Protection 2022

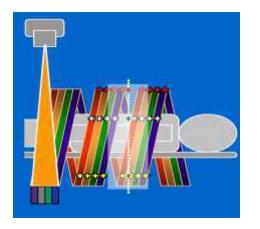
©Jenia Vassileva, IAEA

CT air kerma index C₁₀₀

Measurements in a standard phantom

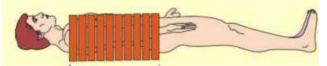


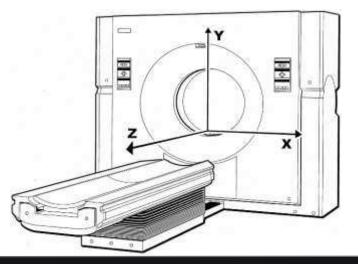

Head

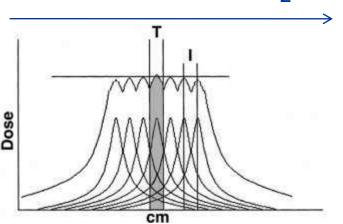

©Jenia Vassileva, IAEA

Standard CT phantom

For helical and MDCT: Volume CT kerma index, C_{vol}


$$C_{\text{vol}} = \frac{C_w}{p} \qquad p = \frac{l}{NT}$$

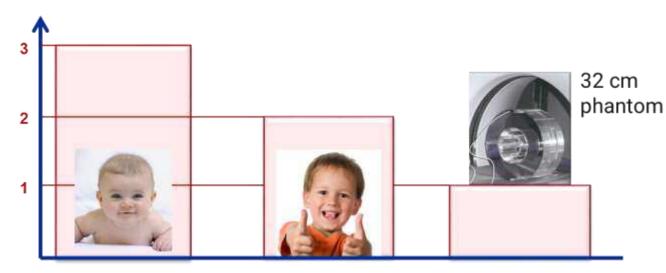

$$p \text{ is pitch factor}$$



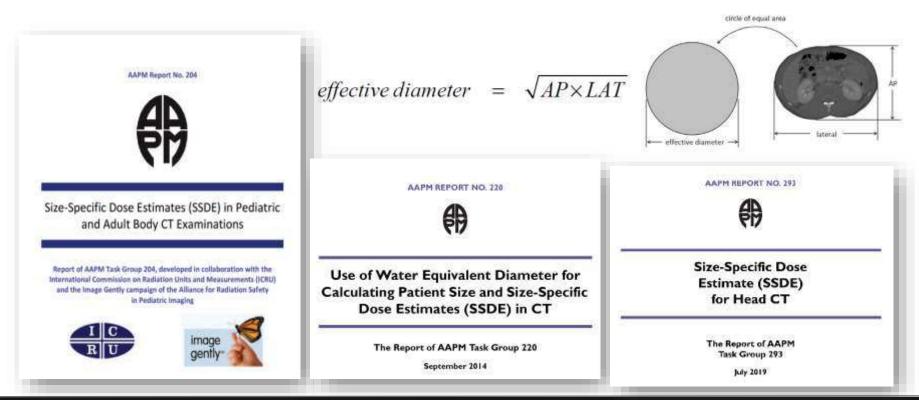
For the entire exam: CT air kerma length - product P
KL(also known as DLP)Unit: mGy.cm

$$DLP = CTDI_{vol} \times (Exposure_length)$$

©Jenia Vassileva, IAEA

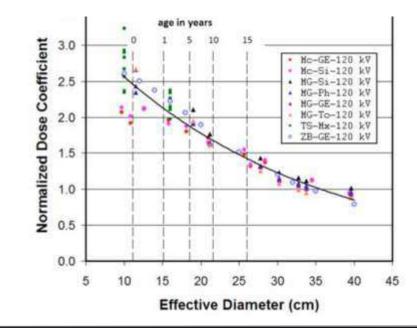

		Dose F	Report		
Series	Туре	Scan Range (mm)	CTDivol (mGy)	DLP (mGy-cm)	Phantom cm
1	Axial	S0.000-S0.000	64.38	64.38	Head 16
1	Axial	\$35.000-\$35.000	64.38	64.38	Head 16
1	Axial	\$50.000-\$50.000	64.38	64.38	Head 16
		Total	Exam DLP:	193.14	

©Jenia Vassileva, IAEA


- CTDI ≠ patient dose
- For the same protocol (set of exposure parameters) for an adult and a child ⇒ the same CTDI

Absorbed dose in the child body will be 2-3 times higher

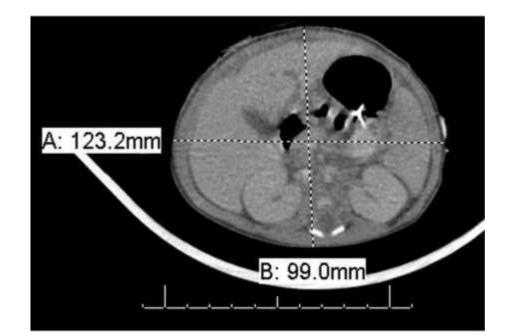
Dose quantities: Computed tomography Size-specific dose estimate (SSDE)



©Jenia Vassileva, IAEA

Size-specific dose estimate (SSDE)

size specific dose estimate = $SSDE = f_{size}^{32X} \times CTDI_{vol}^{32}$



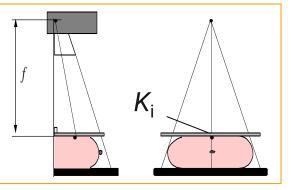
Effective	Conversion	
Dia (cm)	Factor	
8	2.76	
9	2.66	
10	2.57	
11	2.47	
12	2.38	
13	2.30	
14	2.22	
15	2.14	
16	2.06	
17	1.98	
18	1.91	
19	1,84	
20	1.78	
21	1.71	
22	1.65	
23	1.59	
24	1.53	
25	1.48	
26	1.43	
27	1.37	
28	1.32	
29	1.28	
30	1.23	
31	1.19	
32	1.14	
33	1.10	
34	1.06	
35	1.02	
36	0.99	
37	0.95	
38	- 100 + 100 Ber	
39	0.88	
40	0.85	
41	082	
42	0.79	
43	0.76	
44	0.74	
45	0.71	
100		

©Jenia Vassileva, IAEA

Dose quantities: Computed tomography Size-specific dose estimate (SSDE)

Example: Effective diameter 11 см

f = 2.5


SSDE = 5.4 x 2.5 = 13 mGy

5.40 mGy = CTDIvol (32 cm phantom)

©Jenia Vassileva, IAEA

Dose quantities: Mammography

• Incident air kerma, K_i

the air kerma from the incident beam on the central x-ray beam axis at the skin entrance plane, backscatter excluded

Measured with an ionization detector:

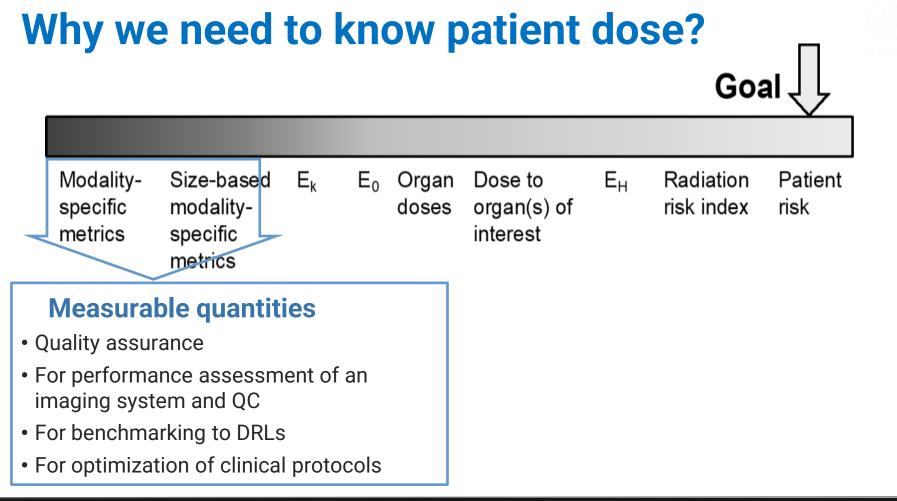
- Free in air
- With a standard PMMA phantom

6th European Congress on Radiation Protection 2022

©Jenia Vassileva, IAEA

Modality specific metrics

Modality

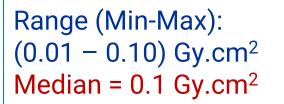

Dose quantity

Dose unit

Plain radiography, including dental	Entrance surface air kerma, K _e Kerma-area product, P _{KA}	mGy µGy.m²
Mammography	Incident air kerma, K _i Mean glandular dose, MGD	mGy mGy
Fluoroscopy & fluoroscopy guided interventional procedures	Kerma-area product, <i>P</i> _{KA} Cumulative air kerma at the interventional reference point	Gy.cm² mGy
Computed tomography	CT air kerma index, <i>C</i> Air kerma-length product, L _{KP}	mGy mGy.cm

©Jenia Vassileva, IAEA

©Jenia Vassileva, IAEA


Modality specific dose metrics

• Used to estimate typical dose values

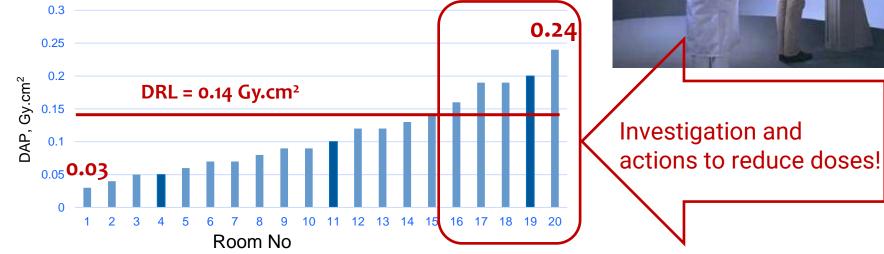
Chest X-ray, Adult patient (average weight 70 kg)

Padier No	Date avar bon (year	Econ 1990 1790	Projes	der der		-	100	EE	of all	1 spid	-	R a Teo	and the	a come	- and	Anna anna	thick s to (100, F00)	arts +
1	3015.03.38	Thoracic spine	PA	Male	22	482	68	115	Yes	Large	24	30	68	58	0.102	t-luity	13	0.10	1.829
W Wh	ite Space	Thoracic spine	PA	Femse	29	163	62	115	Yes	Large	24	30	86	\$2	0.058	1-fully	22	0.09	1.148
3	2015-03-26	Thoracic spine	PA	Male	40	168	55	115	Yes	Large	24	30	71.5	58	0.102	1-fully	20	0.11	2.413
4	2015-03-28	Thoracic spine	PA	Female	30	170	69	\$15	Yes	Large	24	30	65	26	0.051	1-fully	23	0.09	1.018
5	2015-03-28	Thoracic spine	PA	Female	25	163	72	115	Yes	Large	24	30	55	刘	0.051	1-fully	24	0.09	1.040
6	2015-03-28	Thoracic spine	PA	Female	33	173	65	115	Yes	Large	24	30	71.5	SE	0.102	1-tily	22	0.11	2.488
7	2015-03-28	Thoracic spine	PA	Male	55	164	70	\$15	Yes	Large	24	30	71.5	56	0.102	1-tilly	23	0.11	2 568
8	2015-03-28	Thoracic spine	PA	Female	40	165	62	115	Yes	Large	24	30	66	28	0.051	1-tally	22	0.09	1.000
9	2015-03-31	Thoracic spine	PA	Female	78	150	56	115	Yes	Laige	24	30	65	28	0.051	1-taty	22	0.08	0.954
10	2015-03-31	Thoracic spine	PA	Male	29	155	65	115	Yes	Large	24	30	71	58	0.102	T - fully	23	0.11	2.511
10	2015-03-31	Thoracic coine	PA	Maie	39	165	75	115	Yes	Large	24	30	70	58	0.102	1-fully	24	0.10	2.470
.12	2015-03-31	Thoracic spine	PA	Female	27	168	69	115	Yes	Large	24	30	70	58	0.102	1-fully	23	0.10	2.407
13	2015-03-31	Thoracic spine	PA	Male	26	171	74	115	Yes	Large	24	30	71	50	0.102	1-fully	23	0.11	2.531
14	2015-03-31	Thoracic spine	PA	Male	24	170	76	115	Yes	Large	24	30	66	28	0.051	1-fully	24	0.09	1.044
15	2015-04-03	Thoracic spine	PA	Female	50	160	73	115	Yes	Large	24	30	66	40	0.073	1-taty	24	0.09	1.499
16	2015-04-03	Thoracic spine	FA	Male	65	170	75	115	Ves.	Large	24	30	71	56	0.102	1-MIV	24	0.11	2 544
17	2015-04-03	Thoracic spine	FA	Unie	68	168	65	115	Yes	Large	24	30	66	40	0.073	1 - fully	22	0.09	1 438
18	2015-04-03	Thoracic spine	PA	Female	27	165	63	115	Yes	Large	24	43	66	38	0.065	1-MIY	22	0.00	1,290
19	2015-04-03	Thoracic spine	PA	Female	57	166	90	115	Yes	Larga	35	4S	71.5	58	0.102	t-faty.	26	0.11	2742
20	2015-04-03	Thoradic spine	PA	Male	33	173	76	115	Yes	Lage	35	43	70	58	0.102	1-tally	24	0.10	2.448
Average	1					181.45	69	11	5				68.5	45.2	0.082		22.529		1.8691
Standar	d deviation :					70.972	7.9802		1				2.5547	12,722	0.023		2.4757	- 2	0.6916
Minimus	n /					150	55	11	5				65	28	0.051		13.408	1 0	0.9538
Maxim	m					482	90	11	5				71.5	56	0.102		25.28	1 8	2,7423
Mediat	5					157	69	18	S				69	- 56	0.102		22.993		2.1181

Modality specific dose metrics

Used to estimate typical dose values

Chest X-ray, Adult patient (average weight 70 kg)Room 1:Room 2:Median = 0.1 Gy.cm²Median = 0.05 Gy.cm²Median = 0.2 Gy.cm²



Modality specific dose metrics

Used to establish DRLs

Chest X-ray, Adult patient (average weight 70 kg)

Typical DAP values in 20 X-ray rooms

©Jenia Vassileva, IAEA

Patient exposure monitoring workflow

1. Manual recording (at modality):

- Paper
- Into RIS

2. Electronic recording of radiation exposure details in a standard format (at modality):

- Non-DICOM dose objects
 - Modality Performed Procedure Step (MPPS) to HIS/RIS
 - Image "header" attributes
 - Bitmap (graphic) images in PACS and Optical character recognition (OCR) conversion
- DICOM object:
 - For each radiation event
 - Collected in a unique object (DICOM Radiation Dose Structured Report): Includes patient demographics, study information, imaging technique, geometry and dose metrics

RECORDING

Storing

(archive)

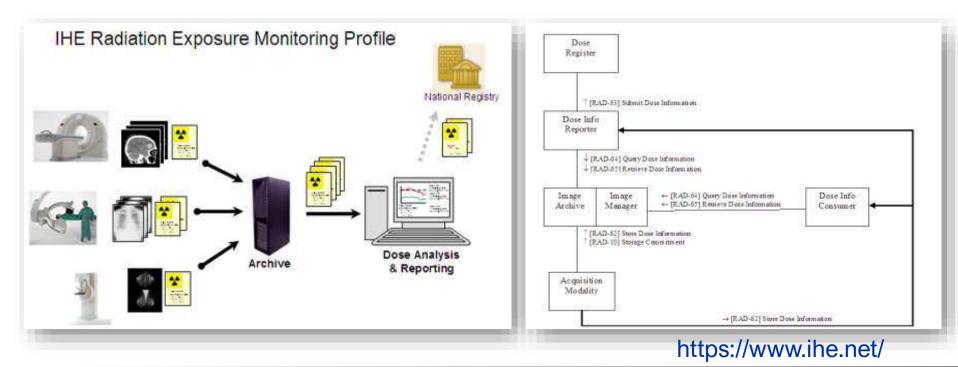
DICOM RDSR

				Planned Protocol	
		0		Device*Aquition Series	Semi-auto Scan Setup
		754	Prior Scan	Pat. Pos.: Feet First / Supine Pat. Instruct : Single Breath Hold	
CT Acquisition Parameters		Modality		/ Full Inspiration	(Prior Comparability)
Exposure Time	7.985			NVp 180-140 Silce Thickness 1.0-2.6mm Recon Karnel Sid	
Scanning Length	367mm	Vendor	Protocol Library	Recon Parnel Sid	Patient
Exposed Range	350mm	vendor			
Nominal Single Collimation Width	0.6mm		Clinical Trial Protocol		Sharing
Nominal Total Collimation Width	19.2mm		Canical That Protocol		Best Practice
Pitch Factor	1.2ratio			Performed Protocol	Protocol
Number of X-Ray Sources	1X-Ray sources		Local Standard	Device=Applion ONE Version#30.4	Backups
CT X-Ray Source Parameters		Hospital	· · · · · · · · · · · · · · · · · · ·	Pat. Pos=Feet First / Supre	Acquisition
Identification of the X-Ray Source	A.	-		Pat tvstruct=Given	Validation
KVP.	120kV		Best Practice	NVp=120 Silce Thickness=1 Oron Recon, KernelkEC12	
Maximum X-Ray Tube Current	381mA	ACR / RSNA		Recon. Kamales C12	Scan QA / Troubleshooting
X-Ray Tube Current	161mA				
Exposure Time per Rotation	0.5s				
CT Dose					
Mean CTDIvol	5.11mGy				
CTDIw Phantom Type					
DLP	183.31mGy.cm				
Dose Check Alert Details					
DLP Alert Value Configured					
CTDEvol Alert Value Configured					
CTDIvol Alert Value	1000mGy				
Dose Check Notification Details					
DLP Notification Value Configured					
CTDIvel Notification Value Configured					
X-Ray Modulation Type	XYZ_BC				
Comment	Internal technical scan parameters: Organ Characte X12_EC	nstic = Thorax, Body Size = Adult, Body Region = B	ody, X-ray Modulation Type =		

SOURCES

©Jenia Vassileva, IAEA

6th European Congress on Radiation Protection 2022


APPLICATIONS

Dianned Protocol

Automatic radiation exposure monitoring

IHE Integrating the Healthcare Enterprise

©Jenia Vassileva, IAEA

Automatic radiation exposure monitoring

Commercial products

		Radiation Dose N Comparison Chart
5	Company	Product
è	Agla Heslthcare	Enterprise Dose Management (powered by DoseMonitor)
ċ	Bayer Healthcare LLC	Radametrics Enterprise Platform
	Bracco Diagnostics	NEXO[DOSE]
C	Carion Medical	Dose Tracking System
ċ	Canon Medical	Spot Fluoroscopy
C	Fujifilm Medical Systems U.S.A., Inc.	FDX Console (common acquisition workstation for all Fujifilm DR portable and room solutions)
U	Pujifilm Medical Systems U.S.A., Inc.	Aspire AWS Console (common acquisition workstation for all Fujififm mammography solutions)
c	GF Healthcare	DoseWatch
0	GE Healthcare	DoseWatch Explore
	Guerbet LLC	Dose&Carg
6	Imalogix	Imalogik
ò	Infanitt Healthcare	DuseM
E.,	Medic Vision Imaging Solutions	SafeCT
ĺ.	MyXrayDose Ltd	MyXrayDose
0	PHS Technologies Group, LLC (PACSHealth, LLC) Group, LLC	DoseMonitor, NexoDose, NovaDose, Radiation Dose Monitoring by Agfa
c	Phillips	DoseWise Portal
ः व	Qaelum	DOSE
ñ	Sectra Inc.	Sectra DoseTrack

anagement

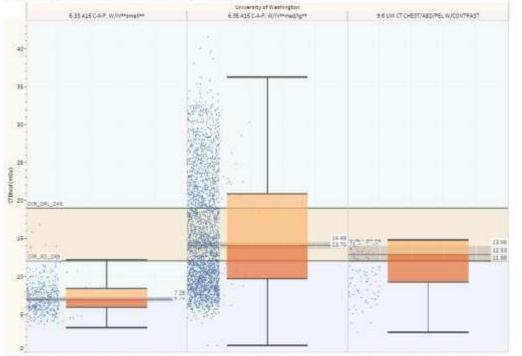
https://www.itnonline.com/chart/radiation-dose-management

©Jenia Vassileva, IAEA

Automatic radiation exposure monitoring

- Free software
 - OpenREM by Ed McDonagh Python SourceCode
 - Pixelmed DoseUtility
 - CT Dose OCR by Philip Cheng at USC ARRS Abstract
 - Generalized Radiation Observation Kit (GROK) by Graham Warden at Brigham & Women's Hospital - Source Code
 - Siemens CARE Analytics (free Windows executable)
 - NIH-CIPS Radiation Exposure Extraction Engine (RE3) Source Code SPIE Abstract - JDI Article

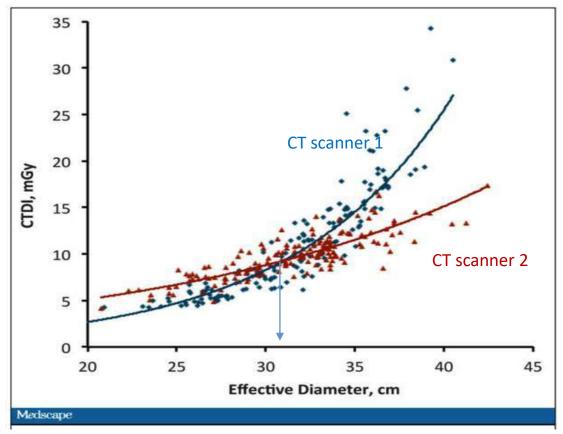
Establishing DRLs and typical doses


• National/ regional dose registries

©Jenia Vassileva, IAEA

Analysis: Benchmarking against DRLs

CTDIvol Facility RPID249 RAD ORDER CT CHST ABD PELVIS W IVCON

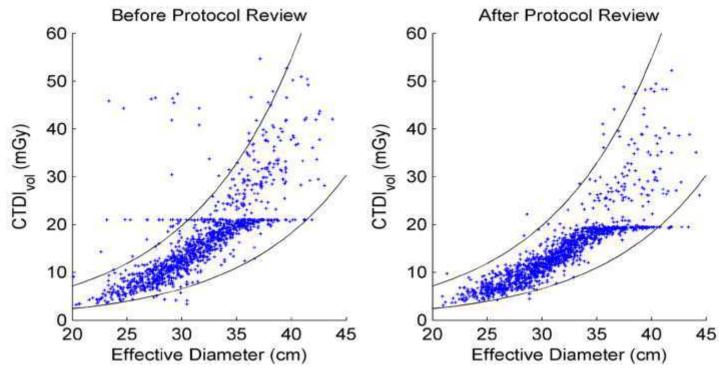


Sum of Jitter is, meetings of the velocity beneficiate and points of points of points of points of the result of methods there is fibered in point. Assisting Guerter, sectors, series, type, transfer, star, participate and failing teamping. The range during fibered point of the result of the resu

Courtesy K. Kanal

©Jenia Vassileva, IAEA

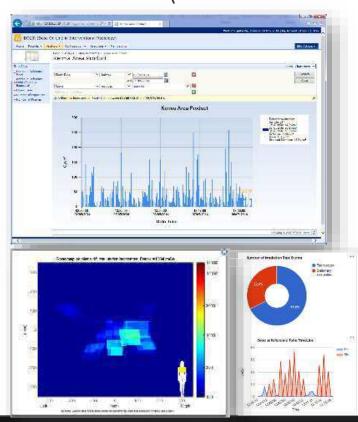
Analysis: Inter-system variability



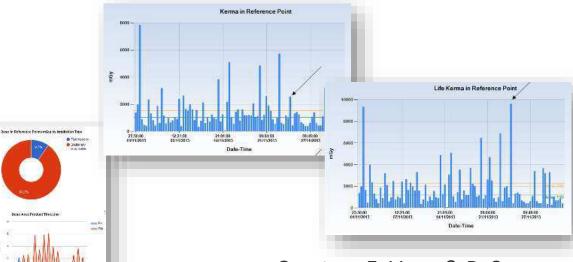
©Jenia Vassileva, IAEA

D.Frush; E. Samei, CT Radiation Dose Monitoring: Current State and New Prospects, Medscape Radiology, 2015

Analysis: Identifying and investigating over-exposure and under-exposure



Courtesy E. Samei, DUMC


Dose monitoring in interventional radiology

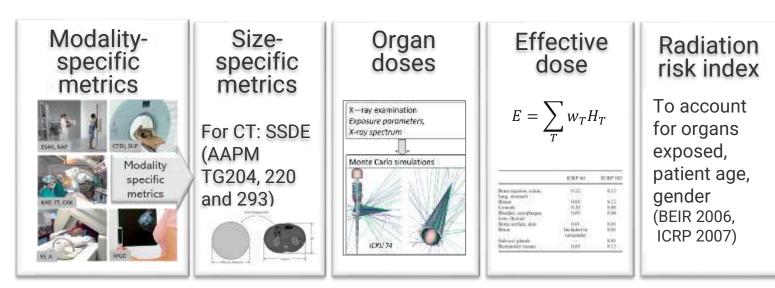
for an arrea freedort Time Line

"Life KAP" and "Life CAK" – cumulative doses values of all the procedures performed on the same patient Clinical follow-up protocol for patients with CAK and Life CAK values > 5 Gy

Courtesy E. Vano & R. Sanczes

©Jenia Vassileva, IAEA

• Why we need to know patient dose?


Modality specific dose metrics

Patient specific metrics

©Jenia Vassileva, IAEA

6th European Congress on Radiation Protection 2033

Dose metrics

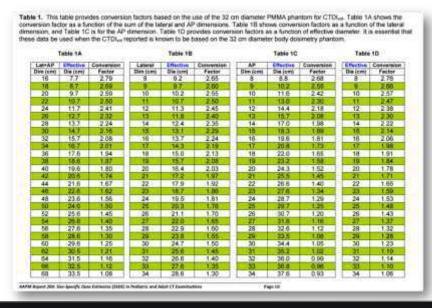
Goal

Individual

risk

Ideally to

account for


patient size,

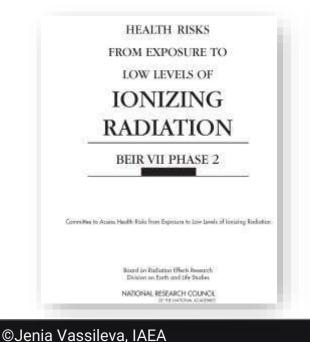
age; gender;

morphology...

Size-specific metrics (for CT)

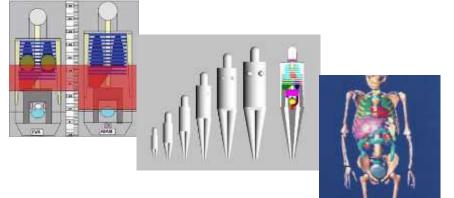
SSDE = CTDI_{vol} • patient size correction factor SSDE is still size-corrected dose to phantom but closer to organ doses in the scanned volume

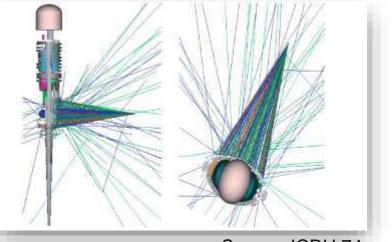
6th European Congress on Radiation Protection 2022


©Jenia Vassileva, IAEA

Organ doses

Organ dose = absorbed energy in the organs of interest

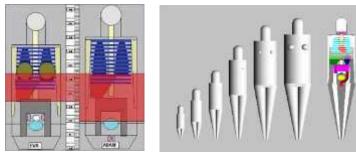

If organ doses of a patient are known, detriment can be estimated using life attributable risk (LAR)


	Age at Exposure (years)												
Cancer Site	00	:5	10	15	20	30	-40	50	.60	70	80		
Malex	6.5	1000	1.00	2.822	2354.1		532.51	7555	1.0	10	e.		
Stomach	41	34	.30 117	25	21 84 23	16	15 60 16	13	11	8	2		
Colon	163	34 139	117	99 27	84	61	60	57	49	36 8	- 21		
Liver	44	-37	- 31	27	23	16	16	14	49 12	8	4		
Lung	318	264	219	182	151	107	107	104	93 7	71	-43		
Prostate	17	15	12	10	9	7	.6	7	7	7			
Bladder	45	38	32	27	23	17	17	17	17	15	11		
Other.	400	255	200	162	134	94	88	77	58	36	015		
All sodid	1028	781	641	533	444	317	310 67	289 71	246 73	181	10; 51		
Leukemia	71	71	71	70	67	64	67	71	73	69	51		
All cancers	1099	852	712	603	511	381	377	360	319	250	153		
Females													
Stomach	- 57	48	-41	34	29	21	20	19	16	13			
Colon	102	48 86 20	41 73 17	62 14	29 53 12	21 38 9	20 37 8	19 35 8	16 31 7	13 25 5	15 15 81		
Liver	24	20	17	14	12	9	8	8	7	5			
Lung	643	534	442	367	305	213	212 35	204	183	140	8		
Breast	274	214	167	130	101	61	35	19	9	5			
Uterus	11	10	8	7	6	4	- 4	3	3	2			
Ovary	55 59	-47	39	34	28	20	20	18	15	10			
Bladder	59	47 51	8 39 43	34 36	31	4 20 23	20 23 97	3 18 22	3 15 22	10 19	13		
Other	.491	287	220	179	147	103	97	80	69	47	1.2		
All solid	1717	1295	1051	862	711	491	455	415	354	265	157		
Leukemia	53	52	53	52	51	51	52	54	55	52	31		
All cancers	1770	1347	1104	.914	762	542	-507	469	409	317	19		

Organ doses

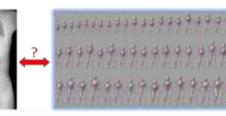
Assessed using patientrepresenting models of body/organs and the irradiation field: Geometrically aligned with the specific irradiation output from the imaging system and inputted into a radiation transport simulator to emulate the imaging procedure

Patient dependent and variable across patients (and not readily available)



Source: ICRU 74

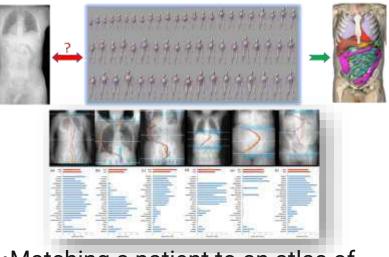
©Jenia Vassileva, IAEA


Organ doses

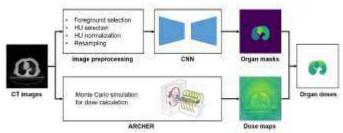
Simplistic geometrical phantoms uniform irradiation fields

- Generic attributes of the patient (size)
- Large uncertainties in reported organ doses estimates
- Conversion coefficients from a modality-specific quantity to organ doses (tabulated or software-based)

Patient-specific organ dosimetry



- Matching a patient to an atlas of diverse, realistic human models
- Improved accuracy



Patient-specific organ dosimetry

Matching a patient to an atlas of diverse, realistic human modelsImproved accuracy

Machine learning methods

- •Organ segmentation and characterization informed by the patient attributes
- •The energy deposited in each organ is normalized by the organ mass to estimate the organ dose
- •High accuracy with errors in doses to sensitive organs below 10%

PCXMC

[https://www.stuk.fi/palvelut/pcxmc-a-monte-carlo-programfor-calculating-patient-doses-in-medical-x-ray-examinations]

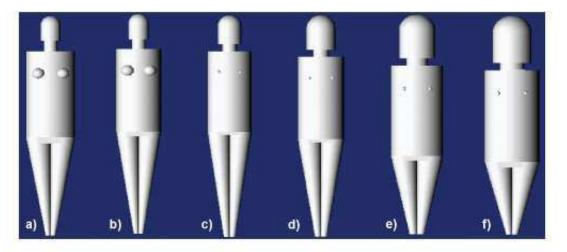
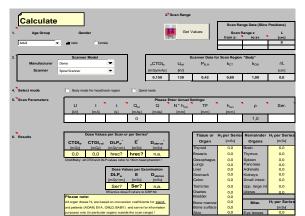



Figure 2: Anterior views of the basic phantom models in PCXMC, scaled to have identical heights. (a) Adult phantom 178.6 cm/73.2 kg, (b) 15-year old phantom 168.1 cm/56.3 kg, (c) 10-year old phantom 139.8 cm/32.4 kg, (d) 5-year old phantom 109.1 cm/19.0 kg, (e) 1-year old phantom 74.4 cm/9.2 kg (f) new-born phantom 50.9 cm/3.4 kg.

©Jenia Vassileva, IAEA

CT-Expo [www.sascrad.com]

ImPACT CT Patient Dosimetry Calculator (www.impactscan.org)

	Ir	nP/	ACT	CI Pati versi		1/07/2002	y Calc	ulato	r
Scanner Mod	ol:					Acquisitio	n Paramet	0.000	
Manufacturer:						mA	ir Falainet	340	-
Scanner	GE QX/i, Ligi	htCao	od Liabt	Encod Dia		Rotation ti	me	0.8	
kV.	120	itape	eu, byn	Speed Fid		mAs / Rot		272	
Scan Region:				-		Collimatio	n	5	Ŧ
Data Set	MCSET19	ι	Jodate I	Data Set		Slice Widt	th	10	_
Current Data	MCSET19					Pitch		1.35	
Scan range						Rel. CTDI	Look up	1.26	
Start Position	-5	cm	Get Fr	om Phantom		CTDI (air)	Look up		1
End Position	45	cm	E	Xagram		CTDI (soft	tissue)	36.9	
Patient Sex:	f					"CTDI"		12.8	
					,				_
Organ			WT	HT	WT.HT		Remainde	r Organs	5
Gonads			0.2	33.434	6.687		Adrenals		
Bone Marrow	(red)	0).12	15.854	1.902		Brain		
Colon).12	32.619	3.914		Upper Lar		tine
Lung).12	7.010	0.841		Small Inte	stine	
Stomach).12	35.678	4.281		Kidney		
Bladder			0.05	39.058	1.953		Pancreas		
Breast			0.05	1.498	0.075		Spleen		
Liver			0.05	33.378	1.669		Thymus		
Oesophagus	(Thymus)	0.05		1.209	0.060		Uterus		
Thyroid			0.05	0.100	0.005	Muscle			
Skin			0.01	13.381	0.134		-		
Bone Surface		0	0.01	22.972	0.230		CTDI _w (m0	Gy)	
Remainder1	emainder1 0.025 17.709				0.443		CDTI _{vol} (m	iGy)	
Remainder 2		0	.025	17.709	0.443		DLP (mG		
	Total	Effe	ctive D	lose (mSv)	22.637				
		-							

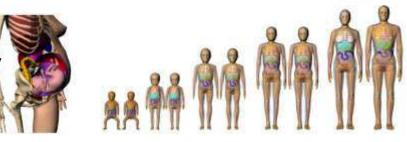
 Muscle
 17.640

 CTDL, (mGy)
 34.7

 CDTL, (mGy)
 25.7

 DLP (mGy.cm)
 1284.5

selected collima Gy/100mAs Gy/100mAs


V/100mA

©Jenia Vassileva, IAEA

Virtual Dose (Virtual Phantoms, inc) http://www.virtualphantoms.com/our-products/

Modules for

- CT
- Interventional procedures

©Jenia Vassileva, IAEA

• XCATdose 3a iPhone (Duke University, USA)

http://www.isradiology.org/2017/isr/dose_calculator_xcatdose3.php

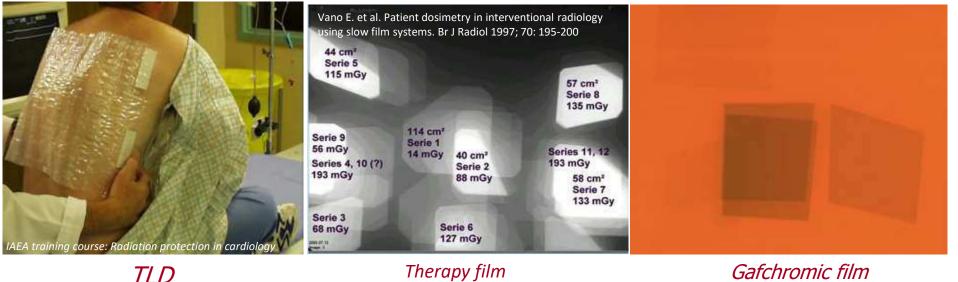
©Jenia Vassileva, IAEA

Organ doses from CT

 Table 4: Summary of the sources and level of uncertainties with computational phantoms and Monte Carlo organ dose estimations

Source of Uncertainty	Contributing Factors	Estimated Uncertainty (±)			
Computational phantoms	Depends on how accurately different types of computational phantoms resemble the anatomical structure of the actual patient	3–66%			
Patient matching	Induced by geometry differences between a patient and the computational phantom that is used to represent that patient	10-15%			
Organ start/end location	Induced by the heterogeneous dose pattern created across the body by the helical trajectory of the CT source	<10% for most organs 10–33% for the small surface organs			
TCM simplification	Induced by using simplified tube current profiles (z-dimensional) to approximate organ dose under TCM	20% depending on the method used to model the dose field under TCM			
2014년 - 1월 - 1월 1월 18월 18일 - 18일		142591 (1022)/201			

Given the present refinement of methods for estimating patient organ dose, AAPM Task Group 246 and EFOMP recommend that efforts be made to perform uncertainty analysis of the respective methods, and that reports of patient organ dose should be accompanied by documented estimates of the uncertainty.

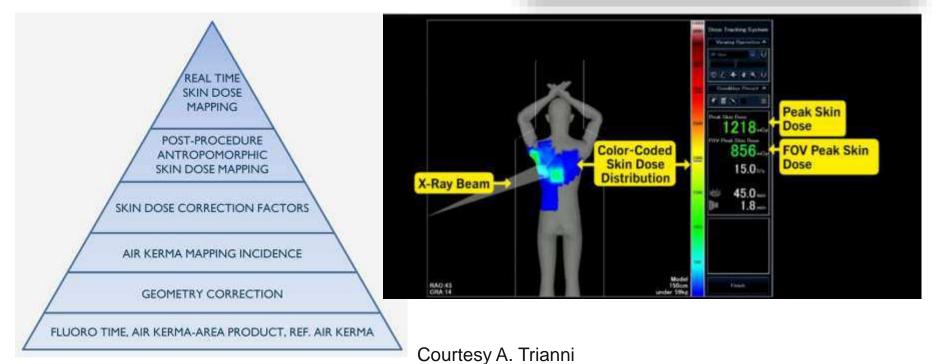

Organ doses to organs of interest

- Fluoroscopy guided procedures:
 - Skin dose in various FGI procedures
 - Brain dose in neoro-interventions
 - Hearth dose in cardiac interventions
- Mammography or chest CT
 - Breast dose
- Head CT or neuororadiology
 - Eye dose
- High dose procedures involving abdomen of pregnant patients
 - Fetal dose

Skin dose in fluoroscopy

• Skin dose (mGy)

Therapy film Kodak X-Omat V Gafchromic film


Skin dose in fluoroscopy

Skin dose = $K_{a,r} \times CF \times Att \times BSF \times (\frac{d_{ref}}{d})^2 \times f_{skin}$

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 12, NUMBER 4, FALL 2011

Calculating the peak skin dose resulting from fluoroscopically guided interventions. Part I: Methods

A. Kyle Jones, In and Alexander S. Pasciak2

©Jenia Vassileva, IAEA

Skin dose calculation and reporting

- Reviewed 19 available software products
- 2 systems use Monte Carlo simulations to model the transport
- All others use a formalism comparable to the methodology proposed by Jones and Pasciak (2011) for systems compliant with IEC standards.
- ±25% agreement with measurements on phantoms for 10 SDC products
- ±43% and ±76% agreement for 2 products validated on patients
- No software validated for vendor-independent transportability

Need for harmonizing both RDSRs and their exports in order to be able to calculate MSD from these data in an easy and straightforward way.

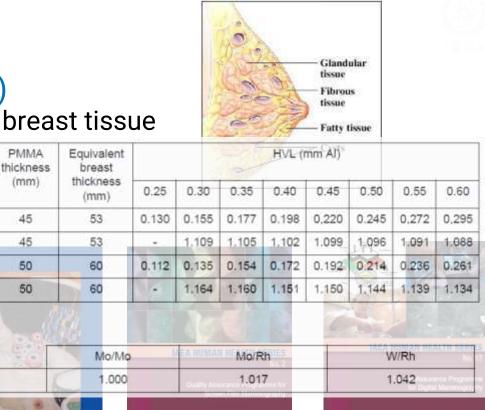
Standards for digital dose reporting

Mammography

Mean glandular dose (MGD) mean absorbed dose in glandular breast tissue

q-factor

c-factor


g-factor

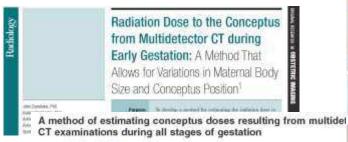
c-factor

s-factor

Europeier participen for quality an attack in breat

 $D_q = K_i \cdot g \cdot c \cdot s$ g, c, s - MC derived correction factors to account for breast thickness, HVL, breast granularity, and anode/filter combination

(I)IAEA


6th European Congress on Radiation Protection 2022

(A) IAEA

©Jenia Vassileva, IAEA

Dose to embryo or fetus

- First approximation: uterus dose (early pregnancy)
- Better accuracy: considering the gestation stage

John Damilakis

Department of Medical Physics, Faculty of Midlane, University of Crete, P.O. Box 2208, 71001 Indian, Came, General

Antonis Tzedakis

Department of Medical Physics, University Biophila of Italian, FO, Kin 1332, 71003 Irakian, Com, Genesi

Kostas Perisinakis

©Jenia Vassileva, IAEA

Department of Medical Physics, Faculty of Medicine, University of Crew, FO, Box 2206, 77003 Institute, Crew, General

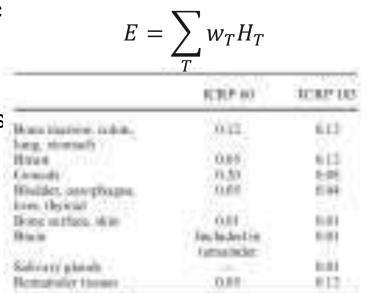
Antonios E. Papadakis

Department of Molical Physics, University Hospital of Irakhon, P.O. Box 1252, 77003 Irakhon, Crete, Greece

(Received 29 June 2010) invised 26 October 2010; accepted for publication 26 October 2010; published 23 November 2010)

Purpose: Current methods for the estimation of conceptus dose from multideteror CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a litual scanlength. However, modified how dose imaging protocols and frequently used during programmer. The purpose of the control atalyst was to develop a method for the estimation of conceptus dose from any MDCT examination of the runk performed during all stages of gestation.

J. Damilakis et al., Medical Physics 37(12):6411 – 6420, 2010



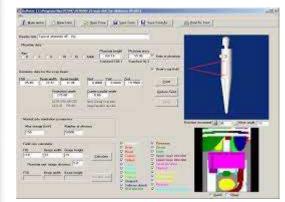
embryodose.med.uoc.gr

Effective dose

• Effective dose calculated from organ doses and weighting factors

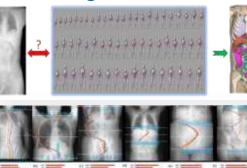
- Devised as a RP quantity for staff and public
- Averaged among gender, age, size
- Different from the real patient
- Uncertainites due to organ dose calculations
 - phantoms, simulations
- Change of w_T over time
- Advantages of effective dose:
 - one number to summarize the detriment
 - can be used among different types of exams
 - deemed appropriate with caution for application to individual risk (ICRP)

Effective dose assessment methods


Computed E using modality-specific conversion factors

 $E_k = k.F$

- *F* modality specific metrics (DLP in CT or KAP in radiography/ fluoroscopy
- k tabulated factor basedon modelling of the patientby reference models


Ignores patient's habitus and irradiation field

Computed *E* using a generic patient model and Monte Carlo (e.g. PCXMC, CTExpo)

Closer representation of the patient exposure

Computed E using patient-specific organ doses

Most patient-relevant technique

6th European Congress on Radiation Protection 2022

Effective dose assessment methods

The three methods do not result in identical estimates

Fu W, Ria F, Wilson J, Kapadia A, Segars WP, Samei E. Effective Dose for Computed Tomography in Large, Clinical Populations. SSG I 2-05, RSNA 2018

- *E* calculated using conversion factor was higher than *E* from patientspecific calculations, especially in large patients:
 - by 80.2 % on average for the abdominopelvic protocol,
 - by 64.1 % for the chest protocol
- For patients with 22, 30, and 35 cm WED, method using conversion factor overestimated E:
 - for abdominopelvic protocol by 9.6%, 66.2%, and 115.6%
 - For chest: 30.2%, 77.9%, and 116.2%

When using effective dose, the exact methodology used should be specified.

Patient-specific risk indexes?

Effective risk

Brenner D, BJR 81 (2008), 521-523

 $R = \sum_{\mathrm{T}} r_{\mathrm{T}} H_{\mathrm{T}},$

 r_{T} - lifetime radiationattributable tissue specific cancer risks (BEIR VII)

Radiation risk index

Li X at al, Med Phys 2011 Jan:38(1):408-419 2013 155(1):42-58 Samei et al. R

Samei et al. Radiat Prot Dosimetry 2

$$RRI_{ag} = \sum_{T} r_{T(a,g)} H_{T}$$

Task Group 79 The Use of Effective Dose as a Risk Related Radiological Protection Quantity

Task Group 113 Reference Organ and **Effective Dose Coefficients** for Common Diagnostic Xray Imaging Examinations

6th European Congress on Radiation Protection 2022

©Jenia Vassileva, IAEA

lissue	Children	Aduits	All ages
Stomach ^a	66	30	37
Lung ^a	373	166	208
Colonª	203	96	118
Liver ^a	32	14	18
Bladder ^a	153	75	91
Uterus ^{a, b}	37	14	19
Ovary ^{a,b}	76	28	37
Prostate ^{a,b}	67	34	41
Breast ^b	865	160	299
Thyroid	200	18	54
Leukemia	133	68	82

Adulte

A 11

Children

Typical effective doses from a single exam

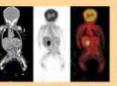
Single procedure	Typical E, mSv	LAR for fatal cancer
US, MRI	0	No radiation risk
Chest X-ray, limb X-ray, pelvis, lumbar spine, mammography	<1	<1 in 20,000)
Intravenous urography (IVU) Barium meal, barium enema Kidney scintigraphy, body scan ERCP, Cystography, MCU CT head and neck, CT chest	1 – 10	1 in 20,000 – 1 in 2,000
CT abdomen & pelvis, CTA PET/CT brain, cardiac, whole body,	10 - 30	1 in 2,000 – 1.5 in 1,000
CTA chest-abdomen-pelvis (multi-phases) TIPS	30 - 100	1.5 in 1,000 – 1 in 200

Typical effective doses from a single exam

5-20 mSv (equivalent to few years exposure to natural radiation)

1-5 mSv (equivalent to a few months to 1-2 years of exposure to natural radiation)

< 0.1 mSv (equivalent to a few days to few weeks of exposure to natural radiation)



Barium enema Chest CT

Abdominal CT

Cardiac angiography

FDG PET CT

dental

24 mSv

Dental Lumbar CBCT spine X ray

Intravenous urography

CT of head

CT of neck

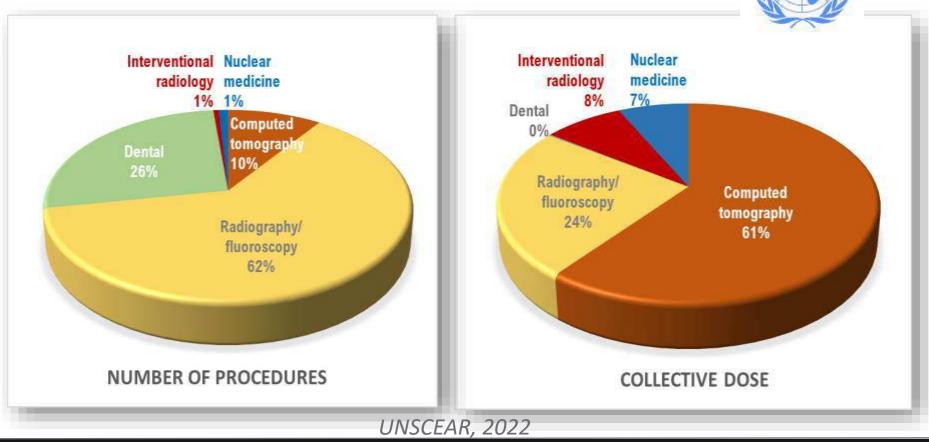
Tc-99m bone scan

CT-guided bone biopsy

Panoramic dental

6th European Congress on Radiation Protection 2022

Typical effective doses from a single exam

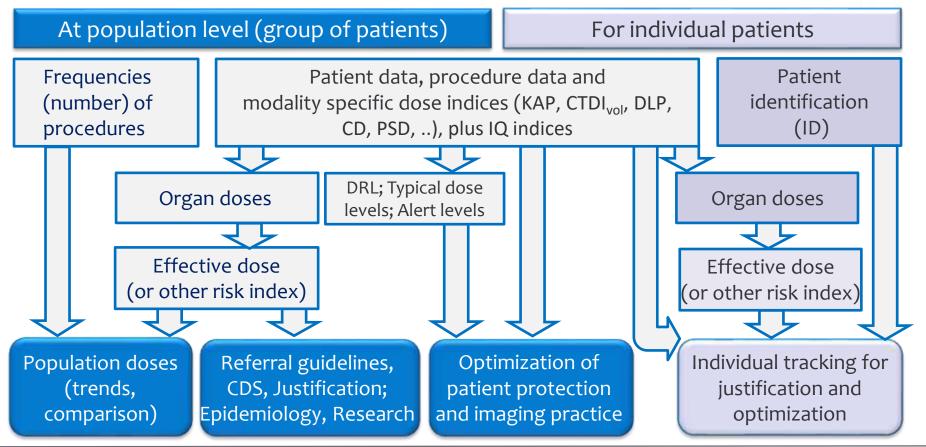

Communication of doses and risk to patients and referring physicians

Diagnostic procedure	Typical effective dose (mSv)	Equivalent number of chest X-rays	Approx equivalent period of natural background radiation*		
Radiographic examinat	ions				
Limbs and joints (except hip)	<0.01	<1	<2 days		
Chest (single PA)	0.015	1	2.5 days	Table 3. Band cla common imaging	
Skull	0.07	5	12 days		
Thoracic spine	0.4	30	2 months	Symbol	Typical
Lumbar spine	0.6	40	3 months	None	(mSv)*
Mammography (2 view)	0.5	35	3 months	None	0
Pelvis	0.3	20	1.5 months	*	<1
Abdomen	0.4	30	2 months	**	1-5
IVU	2.1	140	11.5 months		5.1-10
Barium swallow	1.5	100	8 months	8888	>10
Barium meal	2	130	11 months		

Table 3. Band classification of the typical doses of ionising radiation from common imaging procedures ^{23,26}			
Symbol	Typical effective dose (mSv)*	Examples	Lifetime additional risk of fatal cancer/exam
None	0	US; MRI	0
*	<1	CXR; XR limb, pelvis, lumbar spine; mammography	<1:20,000
* *	1–5	IVU; NM (eg, bone); CT head and neck	1: 20,000-1:4,000
***	5.1–10	CT chest or abdomen; NM (eg, cardiac)	1: 4,000-1: 2,000
****	>10	Extensive CT studies, some NM studies (eg, some PET-CT)	> 1: 2,000

6th European Congress on Radiation Protection 2022

Population dose assessment



©Jenia Vassileva, IAEA

6th European Congress on Radiation Protection 2022

UNSCEAR

Patient exposure monitoring strategy

©Jenia Vassileva, IAEA

6th European Congress on Radiation Protection 2022

PATIENT RADIATION EXPOSURE MONITORING IN MEDICAL IMAGING

Please note: This is a final draft version made available as a preprint advance publishing copy for reference only. This version may contain errors and is not the official IAEA publication. Consistent with the relevant terms of use, the IAEA does not make any warranties or representations as to the accuracy or completeness of this version. To cite this preprint please include 'preprint in the full reference. Any quotations or other information taken from this copy may change in the final publication so please always check the official published version. When it is released a link will appear in the preprint record and will be available of the IAEA publications website. The terms of use of this preprint are the same as those for the IAEA publications - free to read but preprints may not be translated. More information is available at www.iaea.org/publications

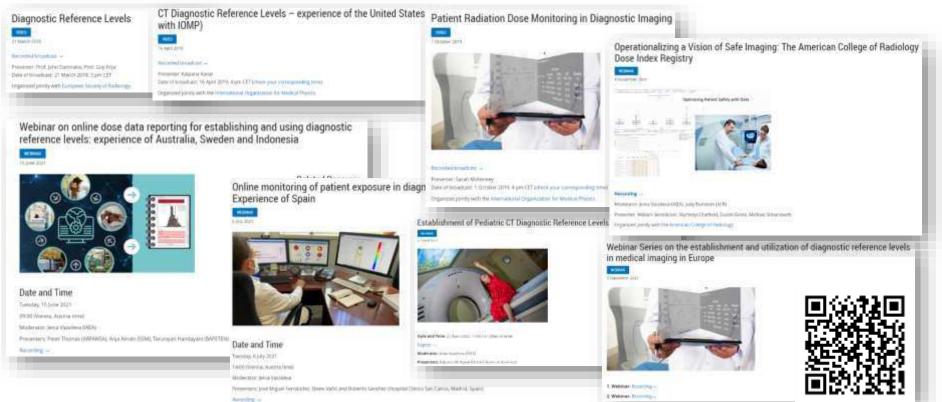
6

7

8

A

R


1. INTRODUCTION	1
2. PATIENT RADIATION EXPOSURE MONITORING GOALS AND STRUCT	JRE 4
3. COMPONENTS OF PATIENT RADIATION EXPOSURE DATA	6
4. PATIENT RADIATION EXPOSURE MONITORING WORKFLOW	18
5. RECORDING PATIENT RADIATION EXPOSURE DATA	19
6. COLLECTION OF PATIENT RADIATION EXPOSURE DATA	27
7. ANALYSING PATIENT RADIATION EXPOSURE DATA	35
8. IMPLEMENTATION OF PATIENT RADIATION EXPOSURE MONITORING	51
APPENDIX	63
REFERENCES	66
GLOSSARY	80
LIST OF ABBREVIATIONS AND SYMBOLS	84

https://preprint.iaea.org/search.aspx?orig q=patient+radiation+exposure+ monitoring&src=ics

IAEA webinars related to the topic

https://www.iaea.org/resources/rpop/resources/webinars

©Jenia Vassileva, IAEA

6th European Congress on Radiation Protection 2022

IAEA eLearning course on DRLs

OPEN-LMS

Home + My courses + Diagnostic Reference Levels in Medical Imaging

Diagnostic Reference Levels in Medical Imaging

Diagnostic Reference Levels in Medical Imaging

This e-learning programme is designed to provide continuing education to medical imaging professionals, regulators and others who are interested in establishment and use of diagnostic reference levels.

Through this course consisting of 13 modules, participants are expected to:

- Understand the concept of DRLs, what are the DRLs and what is their role in the optimization of protection of patients;
- Understand the ORL process and components that need to be considered:
- Understand dose metrics and values used in the DRL process;
- Learn how to establish and appropriately use DRLs in different imaging modalities:
- Learn about useful sources of information relevant to the DRL process.

Duration: 7 h | Interactivity: self-study | Language: English | Assessment: yes (pass mark: 80%) | Certificate: Certificate of Completion | Contact (to be confirmed)

6th European Congress on Radiation Protection 2022

The information in this refresher course is for personal use only and should not be used for other purposes without the author's permission

Jenia Vassileva j.vassileva@iaea.org